Related Titles

Wang, W., Roberts, C. J. (eds.)
Aggregation of Therapeutic Proteins
2010
ISBN: 978-0-470-41196-4

Dübel, S. (ed.)
Handbook of Therapeutic Antibodies
Technologies, Emerging Developments and Approved Therapeutics
2010
ISBN: 978-3-527-32902-1

Jorgenson, L., Nielsen, H. M. (eds.)
Delivery Technologies for Biopharmaceuticals
Peptides, Proteins, Nucleic Acids and Vaccines
2010
ISBN: 978-0-470-72338-8

An, Z. (ed.)
Therapeutic Monoclonal Antibodies
From Bench to Clinic
2009
ISBN: 978-0-470-11791-0

Jensen, K. (ed.)
Peptide and Protein Design for Biopharmaceutical Applications
2009
ISBN: 978-0-470-31961-1

Walsh, G. (ed.)
Post-translational Modification of Protein Biopharmaceuticals
2009
ISBN: 978-3-527-32074-5

Behme, S.
Manufacturing of Pharmaceutical Proteins
From Technology to Economy
2009
ISBN: 978-3-527-32444-6
Therapeutic Proteins

Strategies to Modulate Their Plasma Half-Lives
Contents

Preface XIII
List of Contributors XV

Part One General Information 1

1 Half-Life Modulating Strategies—An Introduction 3
Roland E. Kontermann
1.1 Therapeutic Proteins 3
1.2 Renal Clearance and FcRn-Mediated Recycling 3
1.3 Strategies to Modulate Plasma Half-Life 7
1.3.1 Strategies to Increase the Hydrodynamic Radius 9
1.3.2 Strategies Implementing FcRn-Mediated Recycling 13
1.4 Half-Life Extension Strategies Applied to a Bispecific
Single-Chain Diabody—A Case Study 15
1.5 Conclusion 18
References 19

2 Pharmacokinetics and Half-Life of Protein Therapeutics 23
Bernd Meibohm
2.1 Introduction 23
2.2 Basic Principles of Pharmacokinetics 24
2.2.1 Primary Pharmacokinetic Parameters 24
2.2.2 Secondary Pharmacokinetic Parameters 25
2.3 Pharmacokinetics of Protein Therapeutics 27
2.3.1 Absorption of Protein Therapeutics 28
2.3.2 Distribution of Protein Therapeutics 29
2.3.3 Elimination of Protein Therapeutics 31
2.3.3.1 Proteolysis 31
2.3.3.2 Renal Protein Metabolism 32
2.3.3.3 Hepatic Protein Metabolism 33
2.3.3.4 Receptor-Mediated Protein Metabolism and
Target-Mediated Drug Disposition 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>Conclusions and Outlook</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Half-Life Extension through O-Glycosylation</td>
<td>Fuad Fares</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>The Role of O-Linked Oligosaccharide Chains in Glycoprotein Function</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Designing Long-Acting Agonists of Glycoprotein Hormones</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Construction of Chimeric Genes and Expression Vectors</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Expression of Chimeric Genes</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Bioactivity of Designed Long-Acting Glycoproteins</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Follicle-Stimulating Hormone (FSH)</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Thyrotropin (TSH)</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>Erythropoietin</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>5.3.3.4</td>
<td>Growth Hormone (GH)</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions and Summary</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>Polysialic Acid and Polysialylation to Modulate Antibody Pharmacokinetics</td>
<td>Antony Constantinou, Chen Chen, and Mahendra P. Deonarain</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Polysialic Acid in Nature</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>PSA Biosynthesis and Biodegradation</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>6.4</td>
<td>Pharmacological Effects of PSA</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>6.5</td>
<td>PSA Conjugation: Polysialylation for Therapeutic Applications</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>7</td>
<td>Half-Life Extension through HESylation®</td>
<td>Thomas Hey, Helmut Knoller, and Peter Vorstheim</td>
<td>117</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>7.2</td>
<td>Hydroxyethyl Starch (HES)</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Production and Characteristics</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>7.2.2</td>
<td>HES Parameters</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Mean Molecular Weight</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Molar Substitution (MS)</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Other Parameters</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>7.3</td>
<td>Clinical Use of HES</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>7.4</td>
<td>HES Metabolism and Toxicology</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Metabolic Pathways</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>7.5</td>
<td>HESylation®—Conjugation of Hydroxyethyl Starch to Drug Substances</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The Origin of HES Protein Coupling</td>
<td></td>
<td>123</td>
</tr>
</tbody>
</table>
7.5.2 Going from Multivalent to Site-Specific Functionalization of HES by Selective Oxidation of the Reducing End 124
7.5.3 HES Derivatives Based on Non-Oxidized HES 125
7.6 HES Protein Conjugates–Two Case Studies 127
7.6.1 Erythropoietin Polymer Conjugates 127
7.6.1.1 Erythropoietin Products on the Market 127
7.6.1.2 Chemistry of Polymer Modified Erythropoietin 127
7.6.1.3 In Vitro Activity of Polymer-Modified Erythropoietin Variants 128
7.6.1.4 In Vivo Activity of Polymer-Modified Erythropoietin Variants 129
7.6.2 Polymer-Modified Interferon α Variants 130
7.6.2.1 PEGylated Interferon α Products on the Market 130
7.6.2.2 HESylation of rhIFNα-2b 131
7.6.2.3 In Vitro Activity of HESylated rhIFNα-2b 134
7.6.2.4 Pharmacokinetics of HES-IFNα Compared with PEGasys 135
7.6.2.5 Viscosity: HES Compared with PEG 135
7.7 Summary and Conclusion 136
References 137

Part Three Half-Life Modulation Involving Recycling by the Neonatal Fc Receptor 141

8 The Biology of the Neonatal Fc Receptor (FcRn) 143
Jonghan Kim
8.1 Homeostasis of Albumin and Immunoglobulin 143
8.2 Neonatal Fc Receptor Biochemistry 145
8.3 FcRn Function: Recycling 147
8.4 FcRn Function: Transport 149
8.5 FcRn Function: Mucosal Immune 150
8.6 Therapeutic Implications of FcRn 151
8.7 Conclusions 152
References 152

9 Half-Life Extension by Fusion to the Fc Region 157
Jalal A. Jazayeri and Graeme J. Carroll
9.1 Introduction 157
9.2 Immunoglobulin G 158
9.2.1 The Fc Region 163
9.2.2 The FcReceptor 163
9.2.3 Fc-Mediated Antibody Functions and Their Optimization 166
9.3 Strategies to Increase Cytokine Serum Stability and Half-Life 167
9.3.1 Fc-Fusion Dimeric 168
9.3.1.1 Protein Domains Fused to Fc 168
9.3.2 Fc-Fusion Monomeric 169
9.3.3 Fc-Peptide Fusion Protein (Peptibody) 170
9.3.4 Other Antibody-Engineered Constructs 170
9.3.4.1 Fab Fusions 170
9.3.4.2 Antibody without the Fc Region (Diabodies) 171
9.4 Methods to Construct Fc-Fusion Dimeric Proteins 172
9.4.1 Polymerase Chain Reaction (PCR) Approach 172
9.4.2 Fc-Plasmid Vectors 172
9.4.3 Design Considerations 173
9.4.3.1 Choice of Linkers 173
9.4.3.2 Codon Optimization 174
9.5 Choice of Host for Expression 174
9.5.1 Expression in Bacteria 174
9.5.2 Expression in Mammalian Cells 175
9.5.3 Expression in Insect Cells 175
9.5.4 Expression in Yeast 176
9.6 Purification of Fc Fusion Proteins 176
9.7 Demonstration of Biological Activity in Fc Constructs
 In Vitro and In Vivo 177
9.8 Pharmacokinetics 177
9.9 Applications of Fc Fusion Proteins 178
9.9.1 Therapeutic Proteins 178
9.9.2 Protein/Cytokine Traps 178
9.9.3 Gene Therapy 178
9.9.4 Drug Delivery 179
9.9.5 Research Tool 179
9.9.6 Tumor Targeting 180
9.10 Immunogenicity 180
9.11 Conclusion 181
References 182

10 Monomeric Fc Fusion Technology: An Approach to Create Long-Lasting Clotting Factors 189
Jennifer A. Dumont, Xiaomei Jin, Robert T. Peters, Alvin Luk, Glenn F. Pierce, and Alan J. Bitonti
10.1 Introduction 189
10.2 Neonatal Fc Receptor and Interaction with Immunoglobulin G 189
10.3 Traditional Fc Fusion Proteins 191
10.4 Monomeric Fc Fusion Proteins Show Improved
 Biologic Properties 192
10.4.1 EPOFc as a Prototype Construct 193
10.4.2 Clotting Factor Fc Fusions for the Treatment of Hemophilia 194
10.4.2.1 Recombinant Factor IX-Fc Fusion Protein (rFIXFc) 195
10.4.2.2 Recombinant Factor VIII-Fc Fusion Protein (rFVIIIFc) 200
10.5 Summary 202
Acknowledgments 203
References 203
11 The Diverse Roles of FcRn: Implications for Antibody Engineering 207
E. Sally Ward and Raimund J. Ober
11.1 Introduction 207
11.2 FcRn: Early Characterization and Diverse Expression Patterns 207
11.3 The Molecular Details of FcRn–IgG Interactions 208
11.4 FcRn Is Expressed Ubiquitously throughout the Body Where It Serves Multiple Functions 209
11.5 The Cell Biology of FcRn and Its Intracellular Transport of IgG 210
11.6 The Molecular Determinants of FcRn Trafficking 212
11.7 Engineering IgG–FcRn Interactions 213
11.8 Inhibitors of FcRn Function 215
11.9 Engineering Mice with Altered FcRn Function 216
11.10 Concluding Remarks 216
Acknowledgments 216
References 216

12 Half-Life Extension by Fusion to Recombinant Albumin 223
Hubert J. Metzner, Thomas Weimer, and Stefan Schulte
12.1 Introduction 223
12.2 Recombinant Albumin Fusion Proteins 225
12.2.1 Mode of Action 227
12.2.2 Practical Applications 227
12.2.3 Advantages 228
12.2.4 Challenges 228
12.2.5 Therapeutic Potential 229
12.2.5.1 Fusion to Small Proteins and Peptides 229
12.2.5.2 Fusion to Cytokines 231
12.2.5.3 Fusion to Complex Proteins 232
12.3 Albumin Fusion to Complex Proteins 233
12.3.1 Recombinant Fusion Protein Linking Coagulation Factor VIIa with Albumin (rVIIa-FP) 233
12.3.2 Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) 234
12.3.3 Butyrylcholinesterase (BChE) 234
12.4 Recombinant Albumin Fusion Technology 234
12.4.1 Recombinant Fusion Protein Linking Coagulation Factor VIIa with Albumin (rVIIa-FP) 234
12.4.2 Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) 235
12.4.3 Albutropin 237
12.5 Technological Advantages and Challenges 237
12.6 Pharmacokinetics of Recombinant Albumin Fusion Proteins 238
12.6.1 Recombinant Fusion Protein Linking Coagulation Factor VIIa with Albumin (rVIIa-FP) 238
12.6.2 Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) 238
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6.3 Albutropin</td>
<td>238</td>
</tr>
<tr>
<td>12.7 Preclinical Efficacy</td>
<td>239</td>
</tr>
<tr>
<td>12.7.1 Recombinant Fusion Protein Linking Coagulation Factor VIIa with Albumin (rVIIa-FP)</td>
<td>239</td>
</tr>
<tr>
<td>12.7.2 Recombinant Fusion Protein Linking Coagulation Factor VIIa with Albumin (rVIIa-FP)</td>
<td>240</td>
</tr>
<tr>
<td>12.7.3 Albutropin</td>
<td>240</td>
</tr>
<tr>
<td>12.8 Clinical Efficacy</td>
<td>240</td>
</tr>
<tr>
<td>12.8.1 Albuferon</td>
<td>240</td>
</tr>
<tr>
<td>12.9 Future Perspectives</td>
<td>241</td>
</tr>
<tr>
<td>12.10 Conclusion</td>
<td>241</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>242</td>
</tr>
<tr>
<td>13 AlbudAb™ Technology Platform—Versatile Albumin Binding Domains for the Development of Therapeutics with Tunable Half-Lives</td>
<td>249</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>249</td>
</tr>
<tr>
<td>13.2 The Domain Antibody</td>
<td>251</td>
</tr>
<tr>
<td>13.3 Key Considerations for AlbudAb™-Based Molecules</td>
<td>252</td>
</tr>
<tr>
<td>13.4 Challenges of Albumin as a Target</td>
<td>253</td>
</tr>
<tr>
<td>13.5 Interactions of Albumin with AlbudAbs™</td>
<td>255</td>
</tr>
<tr>
<td>13.6 Bio-Analytical Characterization of AlbudAb™ Leads</td>
<td>256</td>
</tr>
<tr>
<td>13.6.1 Versatility</td>
<td>256</td>
</tr>
<tr>
<td>13.6.2 Affinity to Serum Albumin and Potency</td>
<td>257</td>
</tr>
<tr>
<td>13.6.3 Solution State</td>
<td>258</td>
</tr>
<tr>
<td>13.6.4 Thermal Stability and Aggregation Resistance</td>
<td>258</td>
</tr>
<tr>
<td>13.7 Production of AlbudAb™ Fusions</td>
<td>259</td>
</tr>
<tr>
<td>13.8 Purification of AlbudAbs™</td>
<td>260</td>
</tr>
<tr>
<td>13.9 Biodistribution of AlbudAbs™</td>
<td>260</td>
</tr>
<tr>
<td>13.9.1 Pharmacokinetics and Efficacy of AlbudAb™ Fusions</td>
<td>262</td>
</tr>
<tr>
<td>13.10 Summary and Conclusion</td>
<td>265</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>266</td>
</tr>
<tr>
<td>14 Half-Life Extension by Binding to Albumin through an Albumin Binding Domain</td>
<td>269</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>269</td>
</tr>
<tr>
<td>14.2 Albumin Binding Domains and Engineered Derivatives</td>
<td>270</td>
</tr>
<tr>
<td>14.3 Albumin Binding Domains and Half-Life Extension In Vivo</td>
<td>272</td>
</tr>
<tr>
<td>14.4 Albumin Binding Domains and Immunogenicity</td>
<td>277</td>
</tr>
<tr>
<td>14.5 Bispecific Albumin Binding Domains for Novel Target Binding and Long Half-Life</td>
<td>278</td>
</tr>
<tr>
<td>14.6 Conclusion</td>
<td>279</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td>280</td>
</tr>
</tbody>
</table>
Preface

At the end of 2011, roughly 200 biologics were approved for therapeutic applications and more than 600 were under clinical development. Many of these protein drugs, such as hormones, growth factors, cytokines, coagulation factors, and enzymes, are small in size and are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics, but also for reasons of compliance. Several half-life extension strategies are already utilized in approved drugs, including PEGylation, hyperglycosylation, binding to human serum albumin, and fusion to an immunoglobulin G (IgG) Fc region. However, there is a strong need for new strategies not only to further improve the pharmacokinetic properties but also to facilitate production and application of these half-life extended drugs. These strategies include those that increase the hydrodynamic radius of the drug, thus aiming at reducing the renal clearance, but also strategies that implement recycling by the neonatal Fc receptor (FcRn), which is responsible for the extraordinary long half-life of IgG molecules and serum albumin. In the past 5 to 10 years the field has experienced a rapid growth in the establishment of novel half-life extension strategies, including the application of novel hydrophilic polymers, the generation of recombinant PEG mimic polypeptide chains, and the development of various albumin-binding molecules. Furthermore, the half-life of IgG molecules was altered by engineering of the Fc region, which opens new opportunities for the development of next-generation antibody drugs.

This book is written by renowned experts in the field and is intended to provide a comprehensive overview of the various established but also emerging half-life extension strategies. It can be expected that in the near future many of these technologies will be evaluated in clinical trials and become established strategies to prolong the half-life and thus to improve the pharmacokinetic and pharmacodynamic properties of therapeutic proteins.

Stuttgart, October 2011

Roland Kontermann