Risk Assessment
Theory, Methods, and Applications

MARVIN RAUSAND

STATISTICS IN PRACTICE

WILEY
RISK ASSESSMENT
STATISTICS IN PRACTICE

Advisory Editor

Wolfgang Jank
University of Maryland, USA

Founding Editor

Vic Barnett
Nottingham Trent University, UK

The texts in the series provide detailed coverage of statistical concepts, methods, and worked case studies in specific fields of investigation and study.

With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field. Readers are assumed to have a basic understanding of introductory statistics, enabling the authors to concentrate on those techniques of most importance in the discipline under discussion.

The books meet the need for statistical support required by professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance, and commerce; public services; the earth and environmental sciences.

A complete list of titles in this series appears at the end of the volume.
RISK ASSESSMENT
Theory, Methods, and Applications

MARVIN RAUSAND
Norwegian University of Science and Technology
To Hella, Guro, and Idunn
CONTENTS

Preface xiii
Acknowledgments xvii

PART I INTRODUCTION TO RISK ASSESSMENT

1 Introduction 3
1.1 Introduction 3
1.2 Risk Analysis, Assessment, and Management 7
1.3 The Study Object 12
1.4 Accident Categories 15
1.5 Risk in Our Modern Society 17
1.6 Safety Legislation 19
1.7 Risk and Decision-Making 21
1.8 Structure of the Book 27
1.9 Additional Reading 28
CONTENTS

2 The Words of Risk Analysis

2.1 Introduction 29
2.2 Events and Scenarios 30
2.3 Probability and Frequency 33
2.4 Assets and Consequences 41
2.5 Risk 45
2.6 Barriers 54
2.7 Accidents 56
2.8 Uncertainty 58
2.9 Vulnerability and Resilience 59
2.10 Safety and Security 61
2.11 Additional Reading 63

3 Hazards and Threats

3.1 Introduction 65
3.2 Hazards 66
3.3 Classification of Hazards 70
3.4 Threats 71
3.5 Energy Sources 72
3.6 Technical Failures 74
3.7 Human and Organizational Factors 76
3.8 Additional Reading 76

4 How to Measure and Evaluate Risk

4.1 Introduction 77
4.2 Risk Indicators 78
4.3 Risk to People 79
4.4 Risk Matrices 99
4.5 Risk Acceptance Criteria 106
4.6 Closure 115
4.7 Additional Reading 115

5 Risk Management

5.1 Introduction 117
5.2 Risk Management 117
5.3 Bow-Tie Analysis 119
5.4 Risk Analysis 121
9 Hazard Identification

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>9.2</td>
<td>Hazard Log</td>
<td>216</td>
</tr>
<tr>
<td>9.3</td>
<td>Checklist Methods</td>
<td>219</td>
</tr>
<tr>
<td>9.4</td>
<td>Preliminary Hazard Analysis</td>
<td>223</td>
</tr>
<tr>
<td>9.5</td>
<td>Change Analysis</td>
<td>232</td>
</tr>
<tr>
<td>9.6</td>
<td>FMECA</td>
<td>236</td>
</tr>
<tr>
<td>9.7</td>
<td>HAZOP</td>
<td>246</td>
</tr>
<tr>
<td>9.8</td>
<td>SWIFT</td>
<td>256</td>
</tr>
<tr>
<td>9.9</td>
<td>Master Logic Diagram</td>
<td>262</td>
</tr>
<tr>
<td>9.10</td>
<td>Additional Reading</td>
<td>263</td>
</tr>
</tbody>
</table>

10 Causal and Frequency Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>265</td>
</tr>
<tr>
<td>10.2</td>
<td>Cause and Effect Diagram Analysis</td>
<td>267</td>
</tr>
<tr>
<td>10.3</td>
<td>Fault Tree Analysis</td>
<td>271</td>
</tr>
<tr>
<td>10.4</td>
<td>Bayesian Networks</td>
<td>294</td>
</tr>
<tr>
<td>10.5</td>
<td>Markov Methods</td>
<td>304</td>
</tr>
<tr>
<td>10.6</td>
<td>Petri Nets</td>
<td>316</td>
</tr>
<tr>
<td>10.7</td>
<td>Additional Reading</td>
<td>335</td>
</tr>
</tbody>
</table>

11 Development of Accident Scenarios

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>11.2</td>
<td>Event Tree Analysis</td>
<td>339</td>
</tr>
<tr>
<td>11.3</td>
<td>Event Sequence Diagrams</td>
<td>359</td>
</tr>
<tr>
<td>11.4</td>
<td>Cause-Consequence Analysis</td>
<td>359</td>
</tr>
<tr>
<td>11.5</td>
<td>Escalation Problems</td>
<td>360</td>
</tr>
<tr>
<td>11.6</td>
<td>Consequence Models</td>
<td>361</td>
</tr>
<tr>
<td>11.7</td>
<td>Additional Reading</td>
<td>362</td>
</tr>
</tbody>
</table>

12 Barriers and Barrier Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>12.2</td>
<td>Barriers and Barrier Classification</td>
<td>364</td>
</tr>
<tr>
<td>12.3</td>
<td>Barrier Properties</td>
<td>370</td>
</tr>
<tr>
<td>12.4</td>
<td>Safety Instrumented Systems</td>
<td>372</td>
</tr>
<tr>
<td>12.5</td>
<td>Hazard-Barrier Matrices</td>
<td>382</td>
</tr>
<tr>
<td>12.6</td>
<td>Safety Barrier Diagrams</td>
<td>383</td>
</tr>
</tbody>
</table>
12.7 Bow-tie Diagrams 384
12.8 Energy Flow/Barrier Analysis 385
12.9 Layer of Protection Analysis 388
12.10 Barrier and Operational Risk Analysis 397
12.11 Additional reading 407

13 Human Reliability Analysis 409
13.1 Introduction 409
13.2 Task Analysis 420
13.3 Human Error Identification 427
13.4 HRA Methods 434
13.5 Additional Reading 456

14 Job Safety Analysis 457
14.1 Introduction 457
14.2 Objectives and Applications 457
14.3 Analysis Procedure 458
14.4 Resources and Skills Required 466
14.5 Advantages and Limitations 467
14.6 Additional reading 467

15 Common-Cause Failures 469
15.1 Introduction 469
15.2 Basic Concepts 470
15.3 Causes of CCFs 474
15.4 Modeling of CCFs 476
15.5 The Beta-factor Model 480
15.6 More Complex CCF Models 486
15.7 Additional Reading 495

16 Uncertainty and Sensitivity Analysis 497
16.1 Introduction 497
16.2 Uncertainty 499
16.3 Categories of Uncertainty 500
16.4 Contributors to Uncertainty 502
16.5 Uncertainty Propagation 507
16.6 Sensitivity Analysis 512
CONTENTS

16.7 Additional Reading 513

17 Development and Applications of Risk Assessment 515

17.1 Introduction 515
17.2 Defense and Defense Industry 517
17.3 Nuclear Power Industry 518
17.4 Process Industry 522
17.5 Offshore Oil and Gas Industry 526
17.6 Space Industry 528
17.7 Aviation 530
17.8 Railway Transport 532
17.9 Marine Transport 534
17.10 Machinery Systems 536
17.11 Other Application Areas 537
17.12 Closure 541

PART III APPENDICES

Appendix A: Elements of Probability Theory 545

A.1 Introduction 545
A.2 Outcomes and Events 546
A.3 Probability 550
A.4 Random Variables 555
A.5 Some Specific Distributions 562
A.6 Point and Interval Estimation 571
A.7 Bayesian Approach 575
A.8 Probability of Frequency Approach 577
A.9 Additional Reading 583

Appendix B: Acronyms 585

Appendix C: Glossary 593

References 608

Index 635
Preface

This book gives a comprehensive introduction to risk analysis and risk assessment, and the main methods for such analyses. It deals with accidents that may occur in technical or sociotechnical systems with focus on sudden, major accidents. Day-to-day occupational accidents and negative health effects due to long-term exposure are therefore outside the scope of the book.

In 1991, the Norwegian standard NS 5814, Requirements to Risk Analysis, was issued and I wrote a small book in Norwegian called Risk Analysis: Guidance to NS 5814 (Rausand, 1991). The book was very basic but filled a purpose and was used extensively. I began to write the current book in 1995 after the first edition of the book System Reliability Theory was published. After awhile I realized that writing a book on risk assessment was much more difficult than writing a book on system reliability. This was due mainly to the confusing terminology, the multidisciplinary character of the topics, and the overwhelming number of reports and guidelines that had been written.

In 2008, the second edition of NS 5814 was issued and the guideline had to be updated and extended. This resulted in the book Risk Analysis: Theory and Methods (Rausand and Utne, 2009b), which is written in Norwegian and coauthored by Ingrid Bouwer Utne. The book was strongly influenced by the manuscript of the current book, has a similar structure, but is more basic and straightforward.